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Abstract

The method of lines (MOL) is extended to analyze radia-
ting planar resonators by the use of absorbing boundary
conditions. The complex frequency of a microstrip patch is
computed and compared to results achieved by the integral
equation method.

1 Introduction

The method of lines (MOL) is an efficient tool for the ana-
lysis of planar waveguide structures with multiple layers.
In this paper it is extended to analyze radiating microstrip
patches with various geometries. To limit the area of di-
scretization, the structure is enclosed by walls, on which
absorbing boundary conditions are used to simulate the free
space [1}. The discretization is performed in two dimen-
sions, while an analytical solution is used in the remaining
direction. In this way, only four of these walls are necessary.

As an example, the complex resonant frequency of a rec-
tangular microstrip patch (Fig. 1) is computed and compa-
red with results obtained by the integral equation method.
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Figure 1: Simple Microstrip patch

2 Analysis

Assuming a time dependence exp (jwt) the wave equation,
normalized by ko, for the two independent field components
€., h, can be written as
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L= (Di+ DI+ Dite)p=0, 1)
with
P o i
2=__ 2 = 2. 2 =
Di=o, Di=gm,  Di=gm. @

The Helmholtz operator L can be factored so that
Ly=LtL"¢=0, (3)
from which follow the boundary conditions
Lyp=0, Lfp=0, (4)

with
1
N2 2 2 _ Y (2 2
LE=Ditj/e/14sk, sh= - (D2+D%) (5)
in x-direction and

Lf:Dg:i:j\/e—,\/l—i—sﬁ—y, Ee.

in z-direction. The plus sign is related to waves traveling
in the positive, the minus sign to those traveling in the
negative direction of co-ordinates. For a unique solution
the sign must be chosen properly at each wall so that only
waves incident from the interior of the enclosed structure
are admitted.

To use these boundary conditions in connection with the

1(D,Z;JrD;) (6)

&r

method of lines the radical is approximated by a polynomial

of the form
V1 + 5% & pg + pys? (7

on the interval s € [—j,7]. The advantageous procedure
with shifted line systems to set up a system matrix can
be performed in an elegant way in the method of lines by
the use of dual boundary conditions [2]. For this reason, the
equations (4) are applied to the tangential field components
e,, ey and e, e, respectively, resulting in

Oh
Lfe,=0, LETZ-

0 ®)

with
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on walls parallel to the z-axis and
Oe
L/:t Z_ [ =
: 5 0, LFh, =0 (10)
with e
\Er Pz
L = DI+ DL F j* " D5 + e, (11)
Pz2 P22

on walls parallel to the x-axis.

Figure 2: Microstrip patch with discretization lines and
absorbing boundaries

Wave equation and boundary conditions are now discre-
tized by a set of two line systems parallel to the y-axis (Fig.
2), and the resulting difference equation

(iDg P, -P.+ e,i) v=0 (12)

is transformed by R
T =TY (13)

to get a system of uncoupled ordinary differential equations
= 9 ~2\ —
ID; —kz )W =0. (14)
T is the transformation matrix for the two-dimensional case
given by the Kronecker product
T=T,9T,, (15)

and

~9 =2 =2 ~

ky=2, +X,—¢ 1. (16)
T,,. are the matrices of the eigenvectors of

ToiPoiTos = X,., (17)

and the eigenvalues are given by

=2 — S
AL=L3X, X=AoI. (18)
The difference matrix

P11 Pr12 Pr13

-1 2 -1
—ﬁxzﬁ;Z ‘. e ? (19)
-1 2 -1
Pz13 Pz12 Pe1i
with
Por1 =2+ ag, Priz = =1 —b,, Pa3 =0 (20)
for ¥ = FE, or
P11 = 1+az'7 Pz12 = —1_bz_az7 Pz13 :bx (21)

for ¥ = H,, includes the boundary conditions by means of
the coefficients

_ _22p:v2 + (on - pr) 77'32; b = _2p1'2 — ]nz
¢ 2px2 + ]le ’ ¢ 2pz2 + ]na: ’
(22)

with n, = /&, h.. p.o and p,y are the coefficients of the
approximation in (7). A similar representation can be found
for the matrix P,.

(14) is solved analytically and after some algebraic ma-
nipulation a cascade matrix is obtained for the tangential
field components at the interfaces of an arbitrary dielectric

layer 1, N o .
Ez _ Vz Zz Ez-—l
wl-lv ] e
Ee g ﬁzz kR . E-:m
Hz = 7]0 [ —ﬁxz } ’ E1 =J [ Ezz J ) (24)

At the interface to the open top layer n the relation between
the field components is

with

H,=Y,E,, (25)
in which Y, is a function of Eg and the sign of the radical,
following from (16), must be chosen so that

S {kokz,} > 0 (26)

to get an outgoing wave.

Starting with a short (Eq = 0) for the metallization
at the bottom of the structure, cascading the matrices of
the several layers and taking into account the continuity
equations

= Jxm

BT, H-H-n|7 | @0

for the tangential field components on the lower (=) and
the upper (4) side of the interfaces m with metallizations,
the system equation

Z-J,.=E, (28)



in the transform domain can be formulated. Since the tan-
gential electric field components vanish on the metalliza-
tions, (28) is transformed back to spatial domain and the
nonstandard eigenvalue problem

Zreddm = (29)

with a reduced system matrix Z . has to be solved for the
complex resonant frequency w.

3 Results

A single rectangular microstrip patch with one dielectric
layer of thickness d (Fig. 2) has been investigated. The
use of dual boundary conditions makes it possible, to insert
electric or magnetic walls to utilize the symmetry of the
structure and to reduce the amount of necessary computer
storage. A Taylor series approximation, po = 1, p; = 1/2,
has been used for the operator on every wall. Computed
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Figure 3: Real part (a) and imaginary part (b) of the com-
plex resonant frequency f = f'+j f* of a rectangular micro-
strip patch as a function of length .

—— Method of lines, o Nam and Itoh [3]

(&re = 9.6, w = 0.635 mm, d = 0.635 mm. For good con-
vergence, the distance between the walls, a, b, is more than
one effective wavelength.)

427

results of the complex resonant frequency as a function of
the resonator length are presented in Fig. 3a,b. They show
a very good agreement to those achieved with the integral
equation method [3].

In contrast to the integral equation method the applica-
tion of the method of lines is simple, because no complicated
analysis concerning branch cuts, surface wave poles and the
course of the integration path has to be performed. Several

Figure 4: Examples of microstrip resonators and their dis-
cretization with the method of lines.

structures with various shapes and multiple arbitrary thin
layers, as applied in hyperthermia and geophysics, can be
analyzed (Fig. 4, 5). Optional metallizations at the in-

Figure 5: Resonator structures with multiple layers

terfaces (stacked patches) can be included and there is no
difficulty to consider radiation effects in both vertical direc-
tions (Fig. 6). To this end, only an equation similar to (25)
has to be taken into account at the interface to the bottom



layer, whereas in the integral equation method an additio-
nal branch cut is necessary and more surface wave poles
appear.
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Figure 6: Radiation in two directions
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