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Abstract

The method of lines (MOL) is extended to analyze radia-

ting planar resonators by the use of absorbing boundary

conditions. The complex frequency of a microstrip patch is

computed and compared to results achieved by the integral

equation method.

1 Introduction

The method of lines (MOL) is an efficient tool for the ana-

lysis of planar waveguide structures with multiple layers.

In this paper it is extended to analyze radiating microstrip

patches with various geometries. To limit the area of di-

scretization, the structure is enclosed by walls, on which

absorbing boundary conditions are used to simulate the free

space [I]. The discretization is performed in two dimen-

sions, while an analytical solution is used in the remaining

direction. In this way, only four of these walls are necessary.

As an example, the complex resonant frequency of a rec-

tangular microstrip patch (Fig. 1) is computed and compa-

red with results obtained by the integral equation method.

metallization

substrate

Figure 1: Simple Microstrip patch

2 Analysis

Assuming a time dependence exp (jwt) the wave equation,

normalized by L-., for the two independent field components

e,, hz can be written as

The Helmholtz operator L can be factored so that

L+ = L+ L-@ = 0,

from which follow the boundary conditions

Lf+=o, L$j=o,

with

in x-direction and

T 6, J
L+= D;+j&\l+s~,z s@(D;+D?

(1)

(2)

(3)

(4)

(5)

(6)

in z-direction. The plus sign is related to waves traveling

in the positive, the minus sign to those traveling in the

negative direction of co-ordinates. For a unique solution

the sign must be chosen properly at each wall so that onl:y

waves incident from the interior of the enclosed structure

are admitted.

To use these boundary conditions in connection with the

method of lines the radical is approximated by a polynomial

of the form

m ‘= p, +P2S2 (7)

on the interval s G [—j, j]. The advantageous procedure

with shifted line systems to set up a system matrix can

be performed in an elegant way in the method of lines by

the use of dual boundary conditions [2]. For this reason, the

actuations (4) are applied to the tangential field components

e,, eu and e=, ev respectively, resulting in

(q

with
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on walls parallel to the z-axis and

L(*% = 0,
z ~z L:*h; = O (lo)

with

V@L:* = D~+D$Fj—DZ+EF@ (11
PZ2 PZ2

on walls parallel to the x-axis.
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Figwe 2: Microstrip patch with discretization lines and

absorbing boundaries

Wave equation and boundary conditions are now discre-

tizecl by a set of two line systems parallel to the y-axis (Fig.

2), and the resulting difference equation

( )
iD; –~z–~=+E,i IZ=O (12)

is transformed by

T?.?@ (13)

to get a system of uncoupled ordinary differential equations

P@~)T=O
(14)

T is the transformation matrix for the two-dimensional case

given by the Kronecker product

~=!P=QTz, (15)

and

(16)

TZ,Z are the matrices of the eigenvectors of

T;;~c ,Tz , = ~: ~,,! (17)

and the eigenvalues are given by

(18)

The difference matrix

I !
PZ1l PX12 PZ13

–1 2 –1

F. = g:’ . . . . . . . , (19)

–1 2 –1

%13 $%12 Pcll

with

PZ11=2+Q7 pc~2 = –1 – b= , p.,, = o (20)

for W = E= or

pdl=l+az, pzlz=–l–bz–az, Pz13 = bz (21)

for !l = Hz, includes the boundary conditions by means of

the coefficients

2%2 + (Pzo – %2)& b = _2pz2 – jnz
az = —2

2pzZ +jn= ‘ ‘ 2pZZ + jn=,~n,
(AL)

with n. = &~=. pzo and p=2 are the coefficients of the

approximation in (7). A similar representation can be found

for the matrix ~z.

(14) is solved analytically and after some algebraic ma-

nipulation a cascade matrix is obtained for the tangential

field components at the interfaces of an arbitrary dielectric

layer t,

[21=[W[21 ’23)
with

[1ITzt
H,=vO _H , [1Em,E,=j~zt. (24)

X,

At the interface to the open top layer n the relation between

the field components is

(25)

in which Y. is a function of & and the sign of the radical,

following from (16), must be chosen so that

(26)

to get an outgoing wave.

Starting with a short (EO = O) for the metallization

at the bottom of the structure, cascading the matrices of

the several layers and taking into account the continuity

equations

for the tangential field components on the lower (–) and

the upper (+) side of the interfaces m with metalfizations,

the system equation

——
Z. Jm=ijm (28)



in the transform domain can be formulated. Since the tan-

gential electric field components vanish on the metalliza-

tions, (28) is transformed back to spatial domain and the

nonstandard eigenvalue problem

Z,edJm = O (29)

with a reduced system matrix Zred has to be solved for the

complex resonant frequency u.

3 Results

A single rectangular microstrip patch with one dielectric

layer of thickness d (Fig. 2) has been investigated. The

use of dual boundary conditions makes it possible, to insert

electric or magnetic walls to utilize the symmetry of the

structure and to reduce the amount of necessary computer

storage. A Taylor series approximation, p. = 1, p2 = 1/2,

has been used for the operator on every wall. Computed
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results of the complex resonant frequency as a function of

the resonator length are presented in Fig. 3a,b. They show

a very good agreement to those achieved with the integral

equation method [3].

In contrast to the integral equation method the applica-

tion of the method of lines is simple, because no complicated

analysis concerning branch cuts, surface wave poles and the

course of theintegra,tion path has to be performed, Several
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Figure4: Examples of microstrip resonators and their dis-

cretization with the method of lines.

structures with various shapes and multiple arbitrary thin

layers, as applied in hyperthermia and geophysics, can be

.1 analvzecl (Fijz. 4. 5). ODtional metallizations at the in-. . -,, .

‘1

1
012 CJ iE)i3?8

1/’111111 -

b)

Figure3: Real part (a)and imaginary part (b)ofthecom-

plex resonant frequency j = Y +jfl of a rectangular nlicro-

strip patch as a function of length 1.

—— Method of lines, o Nam and Itoh [3]

(zre=9.6, w=0.635mm, d=0,635 mm. For good con-

vergence, the distance between the walls, a, b, is more than

one effective wavelength. )
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Figure5: Resonator structures with multiple layers

terfaces (stacked patches) can be included and there is no

difficulty to consider radiation effects in both vertical direc-

tions(Fig. 6). Tothisend, only anequation similar to (25)

has to be taken into account at the interface to the bottom



layer, whereas intheintegral equation method anadditio-

nal branch cut is necessary and more surface wave poles

appear.

Figure6: Radiation in two directions
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